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The described 
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Twitter messages 

generated during 
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and crises.

perception, comprehension, and projection. 
Enabling situation awareness in a given 
environment thus relies on being able to 
identify an appropriate set of perception  
elements, coupled with higher-level com-
prehension patterns and forecast operators. 
Although it initially surfaced as a concept 
in the military domain, situation awareness 
has been studied across a wide range of  
domains for both individual and team 
activities. Significantly, it’s been recog-
nized as a critical part of making success-
ful and effective decisions for emergency 
response.2,3

In recent years, social media has emerged 
as a popular medium for providing new 
sources of information and rapid commu-
nications, particularly during natural disas-
ters. Twitter is one such service that allows 
users to broadcast short textual messages, 
or tweets, of up to 140 characters to an au-
dience of followers using Web- or mobile- 
based platforms. An important charac-
teristic of Twitter is its real-time nature.  

Users frequently post what they’re doing 
and thinking about and repeatedly return to 
the site to see what other people are doing. 
This generates numerous user updates from 
which we can find useful information re-
lated to real-world events—including natu-
ral disasters such as earthquakes, bushfires, 
and cyclones.4,5

This growing use of social media during 
crises offers new information sources from 
which the right authorities can enhance 
emergency situation awareness. Survi-
vors in the impacted areas can report on-
the-ground information about what they’re 
seeing, hearing, and experiencing during 
natural disasters. People from surrounding 
areas can provide nearly real-time observa-
tions about disaster scenes, such as aerial 
images and photos. This is particularly use-
ful during severe emergency situations, in 
which people within blackout areas would 
experience limited communication ability. 
By leveraging the public’s collective intelli-
gence, emergency authorities could better 

S ituation awareness is “the perception of elements in the environment 

within a volume of time and space, the comprehension of their meaning, 

and the projection of their status in the near future.”1 This definition suggests 

that establishing situation awareness requires three different levels of activity: 
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understand “the big picture” during 
critical situations, and thus make the 
best, most informed decisions possi-
ble for deploying aid, rescue, and re-
covery operations.

Here, we present a system archi-
tecture for leveraging social me-
dia to enhance emergency situation 
awareness. It differs from existing 
systems2,3 in that the data sources 
are high-speed text streams re-
trieved from Twitter during natu-
ral disasters and crises. These text 
streams provide important situa-
tion awareness information, such as 
community responses to emergency 
warnings, near-real-time notifica-
tion of incidents, and first-hand re-
ports of an incident’s impact. Such 
information, if extracted and ana-
lyzed properly and rapidly, can ef-
fectively contribute to enhancing 
the perception level of situation 
awareness.

Motivation
Because of its growing ubiquity, 
communication rapidity, and cross- 
platform accessibility, Twitter is in-
creasingly being considered as a means 
for emergency communication during 
and after natural disasters.6 In most  
urban areas, different types of net-
works, such as fixed-line, Wi-Fi, 
cellular, and WiMax, can provide 
overlapping coverage for Internet 
connectivity. So, during times of cri-
ses, when a certain type of telecom-
munication infrastructure is de-
stroyed, people can still use other 
means to keep in touch via social 
media. As reported by Craig Fugate 
(the administrator of the US Federal 
Emergency Management Agency)7 
with regard to the catastrophic 2010 
Haiti earthquake, even when an area’s  
physical infrastructure was completely 
destroyed, the cellular tower bounced 
back quickly, allowing survivors to  

request help from local first respond-
ers and emergency managers to relay 
important disaster-related informa-
tion via social media sites.

We’ve seen strong evidence of this 
by capturing Twitter data during 
several natural disasters, such as the 
earthquakes in Christchurch, New 
Zealand, in September 2010 and Feb-
ruary 2011. Figure 1a illustrates the 
correlation between peaks in the vol-
ume of tweets that people in Christ-
church posted and the magnitude of 
the September 2010 earthquake and 
its aftershocks. The x-axis denotes 
the time and date, and the y-axis 
denotes the number of tweets in a 
5-minute period. The red dots indi-
cate when an aftershock of 4.2 mag-
nitude or stronger hit Christchurch, 
and they correlate with a spike in the 
number of tweets that people posted. 
This illustrates that when earthquakes 
or af tershocks occurred, people  

Figure 1. Using social media (such as Twitter) during the Christchurch, New Zealand, earthquakes. (a) Correlation of Twitter 
traffic and the September 2010 earthquake and its aftershocks. The x-axis denotes the date and time, and the y-axis denotes 
the number of tweets in a 5-minute period. Each red dot represents a spike in the number of tweets, and the associated label 
indicates the magnitude of the earthquake or aftershock on the Richter scale. (b) We can see tweets representing (1) a request 
for help and (2) an infrastructure status report of damage, both from Christchurch shortly after the earthquake in February 2011.
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actively broadcast information, wishes, 
and other messages on Twitter. Man-
ually inspecting these tweets con-
firms that in the hours after the 
earthquake, Twitter users local to the 
crisis were providing on-the-ground 
information, including expressions 
of fear, requests for help, and the di-
saster’s impact on the community. 
Figure 1b shows tweets indicating a 
request for help and an infrastructure 
status report of damage.

Crisis Coordination  
and Emergency Response
To better understand how to extract 
emergency situation awareness infor-
mation from social media, we worked 
with the Australian government’s re-
cently established Crisis Coordina-
tion Centre. The CCC is a dedicated 
24/7 facility that supports a whole-
of-government response to national 
security and natural disaster inci-
dents. It’s responsible for hazard 
monitoring and situation awareness, 
and for the timely and accurate dis-
semination of information on emerg-
ing risks and threats to government 
ministers, police, emergency services, 
and other agencies.

Our work with the CCC focuses on 
how best to provide watch officers with 
additional, near-real-time situation 
awareness information drawn from 
high-volume social media text streams.  

A significant motivation stems from 
the Royal Commission on Austra-
lia’s 2009 Victorian bushfires (www. 
royalcommission.vic.gov.au). The com-
mission heard evidence that situation 
awareness information was reported 
in near-real-time on social network-
ing and blog sites but wasn’t visible 
to state or federal crisis coordination 
teams. So, our work aims to assist 
CCC watch officers in gathering such 
information from social media to im-
prove emergency management and 
crisis coordination.

The CCC regularly experiences multi-
ple common modes of operation:

•	A quiet day at the office, which is 
the most frequent mode, given that 
emergency events are expected to 
occur infrequently.

•	Urgent emergency response, which 
requires gathering, verifying,  
coordinating, and rapidly dissemi-
nating information to relevant gov-
ernment ministers and agencies.

•	 Issue management, which focuses 
on exploring and analyzing the de-
tails and impacts of an identified 
incident.

Significant challenges face watch offi-
cers in performing these tasks. First, 
officers must continually monitor a 
large amount of high-volume social 
media streams to maintain situation 
awareness for potential incidents. Sec-
ond, the content published on social 
media is intrinsically noisy and arrives 
at a high rate, making it difficult for 
watch officers to manually monitor 
and analyze such texts. Third, watch 
officers are typically time constrained, 
whereas the information they’re seek-
ing is both time critical and infrequent 
in text streams.

Designing an intelligent system 
can thus help watch officers more  
effectively identify situation aware-
ness information of operational and  

strategical relevance from the large 
information space of social media 
within the time constraints. 

System Architecture
Social media brings new challenges 
about how to sift relevant informa-
tion from the sheer volume of data 
being broadcast over time. User- 
generated content is intrinsically 
noisy and embodies language uses 
that are markedly different from con-
ventional documents, which makes 
traditional natural language process-
ing techniques inapplicable. To deal 
with these difficulties, we developed 
a coherent set of integrated compo-
nents for extracting situation aware-
ness by using various data mining 
techniques, including burst detec-
tion, text classification, online clus-
tering, and geotagging. We adapted  
and optimized these techniques to 
deal with real-time, high-volume text 
streams, which provide capabilities 
that include identifying early indica-
tors of unexpected incidents, explor-
ing the impact of identified incidents, 
and monitoring incidents’ evolution. 
Figure 2 shows our high-level system 
architecture.

The data capture component man-
ages the system’s reliable access to 
Twitter messages using the available 
streaming and search APIs. It gathers 
raw tweets and forwards them to the 
process component, which processes 
the tweets via various methods, in-
cluding burst detection, text classi-
fication, online clustering, and geo-
tagging. Finally, the results from the 
process component go to the visual-
ization component for display to us-
ers. This component can display any 
combination of raw tweets with out-
puts from any of the processing meth-
ods (for example, groups of tweets 
clustered by topic or tweets placed 
on a map based on location informa-
tion). Underlying these components is 

Figure 2. Architecture for emergency 
situation awareness. Key components 
include burst detection, text 
classification, online clustering, and 
geotagging, along with visualization 
interfaces for incident exploration.
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the infrastructure layer, which encap-
sulates shared libraries and low-level 
components for interacting with data 
from Twitter.

Data capture
Using Twitter APIs, we’ve been cap-
turing tweets for specific areas of 
interest within Australia and New  
Zealand since March 2010. Over this 
time period, we’ve captured on the 
order of 66 million tweets from ap-
proximately 2.51 million distinct 
Twitter profiles that cover a range of 
natural disasters and security incidents,  
including

•	 tropical cyclone Ului (March 2010),
•	 the Brisbane storms (June 2010),
•	 the gunman in Melbourne (June 

2010),
•	 the Christchurch earthquake (Sep-

tember 2010),
•	 the Qantas A380 incident (Novem-

ber 2010),
•	 the Brisbane floods (January 2011),
•	 tropical cyclone Yasi (February 

2011), and
•	another Christchurch earthquake 

(February 2011).

Our data capture module uses the 
Twitter API for search and stream 
captures. The challenge for stream 
capture is to obtain tweets rele-
vant to incidents of interest. Because 
tracking from the stream feed deliv-
ers tweets from all over the world, 
not only those of interest in a local-
ity, we mainly use Twitter’s location-
based search API to provide a feed of 
tweets from people within a region of 
interest.

burst Detection  
for Unexpected Incidents
To identify unexpected incidents, we 
developed a burst-detection module 
that continuously monitors a Twitter 
feed and raises an alert for immediate  

attention when it detects an unex-
pected incident. To achieve real-time 
efficiency, we adopt a parameter-free 
algorithm8 to identify bursty words 
from Twitter text streams in our sys-
tem. The basic idea is to determine 
whether a word is bursty on the ba-
sis of its probability distribution in a 
time window. Specifically, we com-
pute the probability of the number 
of tweets that contain the word fj 
in the time window Wi, denoted as 
P(ni,j), using a binomial distribution 
as follows:
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where N is the number of tweets in a 
time window. Note that, although the 
number of tweets Ni in each time win-
dow might be different, we can res-
cale this number in all time windows  
by adjusting word frequencies, such 
that all Ni become the same; thus, we 
don’t consider N as a parameter in 
the method.

In Equation 1, pj is the expected 
probability of the tweets that contain 
the word fj in a random time win-
dow and is thus the average of the 
observed probability of fj in all time 
windows containing fj:
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where L is the number of time win-
dows containing fj.

We determine whether a word fj is 
bursty by comparing the actual prob-
ability Po(ni,j) that the word fj occurs 
in the time window Wi against the 
expected probability pj of the word 
fj occurring in a random window. 
If Po(ni,j) is noticeably higher than 
the expected probability of the word 
fj(pj), this indicates that fj exhibits 

an abnormal behavior in Wi, and we 
consider fj as a bursty feature in Wi.

In our implementation, we used 
a training set of around 30 million 
tweets captured between June and 
September 2010. We preprocessed 
the tweets by removing stop words 
and stemming words, which resulted 
in a set of roughly 2.6 million dis-
tinct features, based on which we 
built our background alert model. In 
the online phase, we devised an alert-
ing scheme that evaluates a sliding 
5-minute window of features against 
the alert model every minute.

For evaluation, we annotated 
roughly 2,400 features in a six-
month Twitter dataset that we col-
lected in 2010. We define an actual 
burst as one feature that suddenly 
occurs frequently in a time window 
and whose occurrence lasts more  
than 1 minute. We evaluate our burst-
detection module using two com-
monly used metrics: detection rate and 
false-alarm rate. We compute the de-
tection rate as the ratio of the number 
of correctly detected bursty features to 
the total number of actual bursty fea-
tures, and the false-alarm rate as the 
ratio of the number of nonbursty fea-
tures that are incorrectly detected as 
bursty features to the total number of 
nonbursty features. Our experimental 
results show that our burst-detection 
module achieves an overall detection 
rate of 72.13 percent and a false-
alarm rate of 1.40 percent. For exam-
ple, we can identify interesting bursts, 
such as a380, earthquake, and  
cyclone, after some real-world emer-
gencies occurred.

classification for  
Impact Assessment
In large-scale crises, understanding 
incidents’ impact is critical to suc-
cessfully restoring safety and recov-
ering essential services. To support  
issue management for an incident, we 
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provide tools to help identify high-
value messages from Twitter. In our 
discussions with CCC staff, they 
highlighted a need to help them un-
derstand an incident’s impact so that 
they could better plan their response. 
To address this need, we built sta-
tistical classifiers that automatically 
identify tweets containing informa-
tion about the infrastructure status, 
where the infrastructure includes as-
sets such as roads, bridges, railways, 
hospitals, airports, commercial and 
residential buildings, water, electric-
ity, gas, and sewerage supplies.

Our training dataset consists of 
roughly 450 tweets posted during the 
February 2011 Christchurch earth-
quake that contain the #eqnz hashtag. 
We manually labeled each tweet with 
a binary annotation based on whether 
it contained information about the 
disaster’s impact on infrastructure.  
As an example, the tweet in Figure 1c 
indicates the status of buildings and is 
thus labeled as a positive example of 
an infrastructure status tweet.

We experimented with two ma-
chine learning methods for tweet 
classification—naive Bayes and sup-
port vector machines (SVM), which 
both work well for text classification 
tasks.9 To extract useful features, we 
preprocessed the dataset by remov-
ing a list of stop words and tokeniz-
ing the tweets. We then constructed 
lexical features and Twitter-specific 
features for classification. These fea-
tures include

•	word unigrams;
•	word bigrams;
•	word length;
•	 the number of hashtags “#” contained 

in a tweet;
•	the number of user mentions,  

“@username”;
•	whether a tweet is retweeted; and
•	whether a tweet is replied to by other 

users.

After feature extraction, we per-
formed experiments using a 10-fold  
cross-validation over our training 
data. Initial results of this work have 
been promising: naive Bayes and SVM 
achieve classification accuracy of 86.2 
percent and 87.50 percent, respec-
tively, over a baseline result of roughly 
60 percent using only word unigrams.

online clustering  
for Topic Discovery
To discover important topics from Twit-
ter, we also developed an online incre-
mental clustering algorithm that au-
tomatically groups similar tweets into 
topic clusters, so that each cluster cor-
responds to an event-specific topic. For 
this task, the desirable clustering algo-
rithm should be scalable to handle the 
sheer volume of incoming tweets and 
not require a priori knowledge of the 
number of clusters, given that tweet con-
tents are constantly evolving over time. 
So, partitional clustering algorithms 
such as k-means and expectation- 
maximization (EM)10 aren’t suitable for 
this problem, because they require the 
number of clusters as input. Hierar-
chical clustering algorithms are also in-
appropriate because they rely on a fully 
specified similarity matrix, which 
doesn’t scale to our data’s growing size.

To capture tweets’ textual informa-
tion, we represent each tweet using a 
vector of terms weighted using term 
frequency (TF) and inverse docu-
ment frequency (IDF). Specifically, 
a tweet represents a data point in d- 
dimensional space, Vi = (v1, v2, …, vd), 
where d is the size of the word vocab-
ulary, and vj is the TF-IDF weight of 
the jth word in tweet Vi.

We propose an online incremen-
tal clustering algorithm that extends 
the single-pass algorithm proposed 
elsewhere.11 Given a Twitter stream in 
which the tweets are sorted according 
to their published time, the basic idea 
of incremental clustering is as follows.  

First, the algorithm takes the first 
tweet from the stream and uses it 
to form a cluster. Next, for each in-
coming tweet, T, the algorithm com-
putes its similarity with any existing 
clusters. Let C be the cluster that has 
the maximum similarity with T. If 
sim(T, C) is greater than a threshold  
d, which is to be determined empiri-
cally, tweet T is added to the cluster C;  
otherwise, a new cluster is formed 
based on T. We define the function 
sim(T, C) to be the similarity between 
tweet T and cluster C. In the cluster-
ing process, whenever a new tweet T 
is added to a cluster C, the centroid of 
C is updated as the normalized vector 
sum of all the tweets in C.

In our algorithm, we use two simi-
larity measures: cosine similarity and 
Jaccard similarity. We define these as
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where Vi ⋅Vj is the dot product of vec-
tor Vi and vector Vj. Here, |Vi ∪ Vj| 
denotes the number of distinct words 
either in tweet Vi or in Vj, and |Vi ∩ Vj|  
denotes the number of common words 
in both Vi and Vj.

To take into account the temporal 
dimension, we add another time fac-
tor to the similarity measure that fa-
vors a tweet to be added to the clusters 
whose time centroids are close to the 
tweet’s publication time. So, we define 
our modified similarity measure as
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where tTi and tTj are the publication 
times of tweets Ti and Tj, respectively. 
The similarity measure depends not 
only on the similarity between the 
vectors of two tweets but also on the 
time distance between them.
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Specifically, our clustering algo-
rithm maintains a list of active clus-
ters. Each cluster is represented by 
a centroid feature vector computed 
from the tweets that it contains, 
and a time centroid that is the aver-
age publication time of all the tweets 
forming the cluster. If no more tweets 
are added to a cluster for a period of 
time, which is determined based on 
application needs, the cluster is con-
sidered inactive and removed from 
the active list. The algorithm con-
siders only those clusters in the ac-
tive list as candidates to which a new 
tweet can be added.

Our clustering algorithm is effi-
cient because it considers each tweet 
at once and thus can scale to a grow-
ing amount of Twitter messages. 
However, because of Twitter’s noisy 
nature, our algorithm could lead to 
a large number of clusters, many of 
which might not correspond to events 
of interest. We overcome this problem 
by filtering out unimportant tweets 
using the burst-detection module and 
allowing only tweets that contain 
bursty features to form clusters. We 
thus dramatically reduce the number 
of clusters and only maintain a list 
of topic clusters associated with real-
world events.

To evaluate the algorithm, we per-
formed experiments on 3,500 tweets 
collected during the February 2011 
Christchurch earthquake. We measure 
clustering quality using the Silhouette 
score,12 which is a metric-independent 
measure designed to describe the ratio 
between cluster coherence and sepa-
ration. Initial results show that using 
Jaccard similarity and cosine simi-
larity, our clustering algorithm can 
achieve a Silhouette score of 0.42 and 
0.34, respectively. This indicates that 
Jaccard similarity achieves higher 
clustering accuracy than cosine simi-
larity. This might be because the TF-
IDF vectors are very sparse owing to 

the tweets’ limited length, and thus 
Jaccard similarity can better capture 
the similarity between tweets.

Geotagging
To facilitate spatial exploration of 
tweets, we also developed a geotag-
ging module that displays the con-
tent of a tweet at its geographic loca-
tion on a map. We do this by using a 
tweet’s coordinates if it’s geotagged, 
or the location information from the 
user’s profile. Specifically, if a tweet 
is geotagged, we display it at its  
latitude/longitude coordinates. Oth-
erwise, we use the location field of the 
user profile to determine a latitude/
longitude position. We first pass the 
location string to the Yahoo geocod-
ing service (http://developer.yahoo. 
com/geo/placefinder/) and retrieve 
the top-five matches worldwide. We 
then select the most suitable one using 
state or country constraints. Figure 3  
shows an example of geotagging 
tweets from the February 2011 earth-
quake. This figure displays the dis-
tribution of tweets that can be geo-
tagged; the marker colors indicate the 
volume of tweets captured at a specific 
location. For further investigation, us-
ers can click each marker to display re-
cent tweets from that location.

visualization
To assist CCC watch officers in moni-
toring unexpected and known inci-
dents, we developed a suite of visu-
alization interfaces for exploring and 
interacting with the information our 
system generated as well as the raw 
data extracted from Twitter.

To explain our visualization tools, 
we use the September 2010 Christ-
church earthquake and an incident in-
volving a Qantas A380 airplane for 
illustration. The historical alert cluster-
ing tool can replay stored alerts, clus-
ter tweets, and track the incident’s evo-
lution. As Figure 4 shows, the viewer 
has a component to identify a reference 
date-time and a slider to move the cur-
rent time point within an hour inter-
val. Our tool maps bursty features to 
different sizes and colors according to 
how statistically different the observed 
number of occurrences is with respect 
to the alert model. The viewer enables 
an operator to track bursty features 
and use them to seed topic clusters. The 
historical alert clustering tool can also 
display tweets belonging to a cluster or 
associated with a bursty feature.

On 4 September 2010, a magni-
tude 7.1 earthquake occurred at 
04:35 NZDT (16:35, 3 September 
UTC) 40 km west of Christchurch  

Figure 3. Geotagging tweets from the February 2011 Christchurch earthquake. The 
marker colors indicate the volume of tweets captured at a specific location, and 
viewers can click each marker to display recent tweets from that location.
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(http://en.wikipedia.org/wiki/2010_ 
Canterbury_earthquake). Our first 
tweet containing earthquake was 
received at 04:36:59 NZDT, with 
10 more tweets occurring within the 
next minute. Our burst detector iden-
tified the word stem earthquak as 
bursting at 04:39, as Figure 4a shows. 
Other word stems and hashtags oc-
curring during the incident and the 
time at which they first appeared 
as bursts included power at 04:40, 
#CHCHQuake at 04:41, #earthquake 
at 04:42, and #eqnz at 05:13.

The Qantas A380 incident con-
cerns an airplane’s engine failure and 
subsequent emergency landing at  
Singapore’s Changi Airport on 4 No-
vember 2010 (http://en.wikipedia.
org/wiki/Qantas_Flight_32). The en-
gine failure occurred at around 10:01 
SGT (02:01 UTC). At 11:45 SGT, the 
crew safely landed the aircraft, but it 
took several hours to shut down an-
other engine before passengers could 
disembark. This event is interesting 
in that the first reports of the incident  
were from Indonesian media reporting  

on debris falling on Batam. Our first 
tweet mentioning Qantas and Batam 
arrived at 14:02 SGT, and our burst 
detector identified plane as bursting 
at 14:17, soon followed by batam at 
14:18 and explod at 14:19. As the 
incident unfolded, the topic clusters 
tracked many sides of the story, from 
the plane reportedly having crashed  
to it safely making an emergency land-
ing in Singapore. Figures 4b through 
4d show the data evolving from the 
bursting of plane to the emergence 
of a topic cluster for land.

Figure 4. Visualizations for (a) the Christchurch 2010 earthquake and (b)–(d) the Qantas A380 incident. We can see the data 
evolving from the bursting of plane to the emergence of a topic cluster for land.

(a) (b)

(c) (d)
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Our proposed architecture can 
clearly provide useful situation 

awareness information through a set 
of tightly integrated components. It 
can thus provide on-the-ground in-
formation from the general public, as 
reported in Twitter, to help establish 
and enhance timely situation aware-
ness across a range of crisis types.

In the future, we will conduct more 
experiments on large-scale datasets 
to evaluate our system’s overall per-
formance. We also plan to improve 
the performance of burst detection 
and tweet classification by using ad-
ditional external resources to com-
pensate for tweets’ terseness. Finally, 
we will explore the use of smoothing 
techniques to tackle the data sparsity 
problem for better topic clustering.
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